Skip to content
Snippets Groups Projects
pyTransfocator_single.py 26.2 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
import numpy as np
from scipy.optimize import root_scalar
import xraylib

"""
pyDevice TO DO: 

WHAT inputs change the focal size arrays? Energy, what else?
WHAT inputs change the search through the arrays? desired focal size, what else?

IOC init functions
-get lens stack parameters (# of lenses in each stack, radius, location, thickness, thickness error) -- from substitution file but put into PVs? Update with autosave?
-get source info
	-energy from from ID IOC
	-hor/vert sizes and divergence (also energy dependent)
-lens diameter table? What is it doing?

-desired focal size is changed --> what needs updating? --> nothing, just need to search focal size array again
	-multiple flags: is focal size achievable? is it achievable at sample?

recalc function -- should probably be same as init function
-energy is updated --> what needs updating?

-what else could user/staff change? sample position?
"""

# Beamline input block
energy = 15000.0            # Energy in eV
energy_keV = energy/1000.0  # Energy in keV
wl = 1239.84 / (energy * 10**9)
d_StoL1 = 51.9              # Source-to-CRL1 distance, in m
d_StoL2 = 62.1              # Source-to-CRL2 distance, in m
d_Stof  = 66.2              # Source-to-focus distance, in m
#slit1_H = 500.0e-6          # H slit size before CRL 1
#slit1_V = 300.0e-6          # V slit size before CRL 1

# CRL input block
d_min   = 3.0e-5            # Minimum thickness at the apex in m
stack_d = 50.0e-3           # Stack thickness in m
L1_n    = np.array([1,      1,      1,      1,      1,      1,      2,      4,      8,      16])                # CRL1 number of lenses in each stack
L1_R    = np.array([2.0e-3, 1.0e-3, 5.0e-4, 3.0e-4, 2.0e-4, 1.0e-4, 1.0e-4, 1.0e-4, 1.0e-4, 1.0e-4])            # CRL1 lens radius in each stack
L1_mater= np.array(["Be",   "Be",   "Be",   "Be",   "Be",   "Be",   "Be",   "Be",   "Be",   "Be"])              # CRL1 lens material in each stack
L1_loc  = np.array([4.5,    3.5,    2.5,    1.5,    0.5,    -0.5,   -1.5,   -2.5,   -3.5,   -4.5])*stack_d      # CRL1 lens stack location relative to center stack, positive means upstream
L1_HE   = np.array([1.0e-6, 1.0e-6, 1.0e-6, 1.0e-6, 1.0e-6, 1.0e-6, 1.4e-6, 2.0e-6, 2.8e-6, 4.0e-6])            # CRL1 lens RMS thickness error


# Source size input block
L_und = 4.7                 # undulator length
sigmaH_e = 14.8e-6          # Sigma electron source size in H direction in m
sigmaV_e = 3.7e-6           # Sigma electron source size in V direction in m
sigmaHp_e = 2.8e-6          # Sigma electron divergence in H direction in rad
sigmaVp_e = 1.5e-6          # Sigma electron divergence in V direction in rad
sigmaH = (sigmaH_e**2 + wl*L_und/2/np.pi/np.pi)**0.5
sigmaV = (sigmaV_e**2 + wl*L_und/2/np.pi/np.pi)**0.5
sigmaHp = (sigmaHp_e**2 + wl/L_und/2)**0.5
sigmaVp = (sigmaVp_e**2 + wl/L_und/2)**0.5

# Lookup table where each entry is a tuple (column1, column2)
Lens_diameter_table = [
    (50, 450.0),
    (100, 632.0),
    (200, 894.0),
    (300, 1095.0),
    (500, 1414.0),
    (1000, 2000.0),
    (1500, 2450.0),
]

# Convert the lookup table to a dictionary for faster lookup
Lens_diameter_dict = {int(col1): col2 for col1, col2 in Lens_diameter_table}

def lookup_diameter(lens_radius):
    # Convert the input float to an integer
    input_int = int(round(lens_radius*1.0e6))
    return Lens_diameter_dict.get(input_int, (lens_radius*1.0e6)**0.5*63.222+ 0.73)/1.0e6

def index_to_binary_list(index, length):
    """
    Converts an index number to its binary representation as a list of digits,
    and pads the list with zeros in front to achieve the desired length.
    
    Parameters:
        index (int): The index number to be converted.
        length (int): The desired length of the binary list.
    
    Returns:
        list: A list of digits representing the binary representation of the index.
    """
    # Convert the index to a binary string and remove the '0b' prefix
    binary_str = bin(index)[2:]
    
    # Pad the binary string with zeros in front to achieve the desired length
    #padded_binary_str = binary_str.zfill(length)
      
    # Reverse the binary string
    reversed_binary_str = binary_str[::-1]
    
    # Convert the reversed binary string to a list of integers
    binary_list = [int(digit) for digit in reversed_binary_str]
    
    # Pad the list with zeros at the end to achieve the desired length
    while len(binary_list) < length:
        binary_list.append(0)

    return binary_list

def binary_list_to_index(binary_list, length):
    """
    Converts a list of binary digits in reverse order to its integer representation,
    padding the list with zeros at the end to have a fixed number of elements.
    
    Parameters:
        binary_list (list): A list of digits representing the binary number in reverse order.
        length (int): The fixed number of elements the list should have.
    
    Returns:
        int: The integer representation of the binary number.
    """
    # Pad the list with zeros at the end to achieve the desired length
    while len(binary_list) < length:
        binary_list.append(0)
    
    # Convert the binary list to an integer
    index = 0
    for i, digit in enumerate(binary_list):
        index += digit * 2**i
        
    return index

def materials_to_deltas(material_list, energy):
    """
    Convert a list of material names to a list of delta values at a given energy.
    
    Parameters:
        material_list (list): A list of material names.
        energy (float): The energy in keV.
    
    Returns:
        list: A list of delta values for the given materials at the given energy.
    """
    # The list to store delta values
    delta_list = []

    # Iterate through each material in the input list
    for material in material_list:
        # Compute the delta value for the current material at the given energy
        Z = xraylib.SymbolToAtomicNumber(material)
        density = xraylib.ElementDensity(Z)
        delta = 1.0-xraylib.Refractive_Index_Re(material, energy, density)
        
        # Add the delta value to the delta list
        delta_list.append(delta)
    
    return delta_list

def materials_to_linear_attenuation(material_list, energy):
    """
    Convert a list of material names to a list of linear attenuation coefficients at a given energy.
    
    Parameters:
        material_list (list): A list of material names.
        energy (float): The energy in keV.
    
    Returns:
        list: A list of linear attenuation coefficient values (in m^-1) for the given materials at the given energy.
    """

    # The list to store linear attenuation coefficient values
    mu_list = []

    # Iterate through each material in the input list
    for material in material_list:
        # Compute the delta value for the current material at the given energy
        Z = xraylib.SymbolToAtomicNumber(material)
        density = xraylib.ElementDensity(Z)
        # Compute the mass attenuation coefficient in cm^2/g
        #mass_attenuation = xraylib.CS_Photo(Z, energy)
        mass_attenuation = xraylib.CS_Total(Z, energy)
        # Convert mass attenuation coefficient to linear attenuation coefficient in m^-1
        mu = mass_attenuation * density * 100.0       
        # Add the linear attenuation coefficient value to the list
        mu_list.append(mu)
    
    return mu_list

def absorptionaperture(x, n1mud, sigma, n1mur):
    numerator = np.exp(-(x**2/(2*sigma**2))) * np.exp(-n1mur*(x**2) - n1mud)
    denominator = np.exp(-n1mud)
    return numerator / denominator - 0.5

def find_levels(array, levels, direction='forward'):
    """
    Find the first indices at which the array crosses specified levels and the corresponding crossed values.

    Parameters:
        array (numpy.ndarray): An array of numbers.
        levels (float or numpy.ndarray): A number or an array of levels to find crossings.
        direction (str, optional): The searching direction. Defaults to 'forward'.
                                   Can be either 'forward' or 'backward'.

    Returns:
        tuple: A tuple containing two arrays:
            - An array of first indices at which the array crosses the specified levels.
            - An array of first crossed values at the corresponding indices.
    """

    # Convert a single level to a numpy array
    if isinstance(levels, (int, float)):
        levels = np.array([levels])

    indices = []
    values = []

    # Compute the max and min of the array ignoring NaNs
    max_val = np.nanmax(array)
    min_val = np.nanmin(array)

    for level in levels:
        # If level is out of bounds
        if level > max_val or level < min_val:
            indices.append(-1)
            values.append(np.nan)
            continue

        crossings = []

        if direction == 'forward':
            for i in range(1, len(array)):
                if np.isnan(array[i - 1]) or np.isnan(array[i]):
                    continue
                if (array[i - 1] < level <= array[i]) or (array[i - 1] > level >= array[i]):
                    crossings.append(i - 1)
                    break

        elif direction == 'backward':
            for i in range(len(array) - 2, -1, -1):
                if np.isnan(array[i + 1]) or np.isnan(array[i]):
                    continue
                if (array[i + 1] < level <= array[i]) or (array[i + 1] > level >= array[i]):
                    crossings.append(i)
                    break

        else:
            raise ValueError("Invalid direction. It should be either 'forward' or 'backward'.")

        if len(crossings) > 0:
            idx = crossings[0]
            indices.append(idx)
            values.append(array[idx])
        else:
            # In case no crossing is found within the range
            indices.append(-1)
            values.append(np.nan)

    return np.array(indices), np.array(values)


def Single_CRL2D_control(fsize):

    L1_D        = np.zeros(L1_R.size)                                   # CRL1 diameters for each stack
    for i in range(L1_R.size):
        L1_D[i] = lookup_diameter(L1_R[i])
    L1_delta    = materials_to_deltas(L1_mater, energy_keV)             # delta values for CRL1 stacks
    L1_mu       = materials_to_linear_attenuation(L1_mater, energy_keV) # mu values for CRL1 stacks
    L1_Feq      = L1_R/(2*L1_n*L1_delta) + L1_loc                       # CRL1 equivalent f in m for each stack
    
    L1_index_n  = 2**L1_Feq.size                                        # Total number of combinations for CRL1
    L1_invF_list= np.zeros(L1_index_n)                                  # List of equivalent 1/f in m^-1 for CRL1
    for i in range(L1_index_n):
        L1_invF_list[i] = np.sum(index_to_binary_list(i, L1_Feq.size)/L1_Feq)
    # Sort the L1_invF list (to avoid zigzagging)
    L1_invF_list_sort_indices = np.argsort(L1_invF_list)
    L1_invF_list_sorted       = L1_invF_list[L1_invF_list_sort_indices]
    q1_list  = 1/(L1_invF_list_sorted - 1/d_StoL1)      # focal position of CRL1 for all configurations (sorted)
    dq1_list = q1_list - (d_Stof - d_StoL1)

    # Start generating focal size list as a function of CRL1 setting
    sigma1H         = (sigmaH**2 + (sigmaHp*d_StoL1)**2)**0.5   # sigma beam size before CRL1
    sigma1V         = (sigmaV**2 + (sigmaVp*d_StoL1)**2)**0.5   # sigma beam size before CRL1
    L1_n1mud_list   = np.zeros(L1_index_n)                      # List of n1*mu*d_min for all possible CRL1 configurations
    L1_n1muR_list   = np.zeros(L1_index_n)                      # List of n1*mu/R for all possible CRL1 configurations
    aperL1H_list    = np.zeros(L1_index_n)                      # absorption H aperture of CRL1 for all configurations
    aperL1V_list    = np.zeros(L1_index_n)                      # absorption V aperture of CRL1 for all configurations
    diameter1_list  = np.zeros(L1_index_n)                      # CRL1 diameter for all possible configurations
    FWHM1H_list     = np.zeros(L1_index_n)                      # H focal size at the focus of CRL1
    FWHM1V_list     = np.zeros(L1_index_n)                      # V focal size at the focus of CRL1
    Strehl_list     = np.zeros(L1_index_n)                      # Strehl ratio based on lens thickness error

    for i in range(L1_index_n):
        # absorption aperture is a function of CRL absorption/physical aperture, incident beam size, and physical slits
        L1_n1mud_list[i] = np.sum(index_to_binary_list(L1_invF_list_sort_indices[i], L1_Feq.size)*np.array(L1_mu*L1_n*d_min))
        L1_n1muR_list[i] = np.sum(index_to_binary_list(L1_invF_list_sort_indices[i], L1_Feq.size)*np.array(L1_mu*L1_n/L1_R))
        solution = root_scalar(absorptionaperture, args=(L1_n1mud_list[i], sigma1H, L1_n1muR_list[i]), bracket=[0.0, 2*sigma1H], method='bisect')
        aperL1H_list[i] = solution.root*2.0
        solution = root_scalar(absorptionaperture, args=(L1_n1mud_list[i], sigma1V, L1_n1muR_list[i]), bracket=[0.0, 2*sigma1V], method='bisect')
        aperL1V_list[i] = solution.root*2.0
        mask = (np.array(index_to_binary_list(L1_invF_list_sort_indices[i], L1_Feq.size)) == 1)
        if np.all(mask == False):
            diameter1_list[i] = np.inf
        else:
            diameter1_list[i] = np.min(L1_D[mask])
        aperL1H_list[i] = min(aperL1H_list[i], diameter1_list[i], slit1_H)
        aperL1V_list[i] = min(aperL1V_list[i], diameter1_list[i], slit1_V)
        phase_error_tmp = np.linalg.norm(index_to_binary_list(L1_invF_list_sort_indices[i], L1_Feq.size)*np.array(L1_HE*L1_delta)*2*np.pi/wl)
        Strehl_list[i] = np.exp(-phase_error_tmp**2)

    # FWHMbeam size at CRL1 focus
    FWHM1H_list  = ((0.88*wl*q1_list/aperL1H_list)**2 + (2.355*sigmaH*q1_list/d_StoL1)**2)**0.5
    FWHM1V_list  = ((0.88*wl*q1_list/aperL1V_list)**2 + (2.355*sigmaV*q1_list/d_StoL1)**2)**0.5
    if flag_HE:
        FWHM1H_list *= (Strehl_list)**(-0.5)
        FWHM1V_list *= (Strehl_list)**(-0.5)
    FWHM_list   = (FWHM1H_list*FWHM1V_list)**0.5

    indices, values = find_levels(FWHM_list, fsize, direction='backward')
    index = indices[0]
    if index == -1:
        print(f"Cannot achieve the focal size {fsize*1.0e6:.2f} μm")
    else:
        print("======== Find size at focus ========================================")
        print(f"Energy: {energy_keV} keV")
        print(f"CRL1 configuration index in sorted list is {index}")
        print(f"CRL1 configuration index is {L1_invF_list_sort_indices[index]} or {index_to_binary_list(L1_invF_list_sort_indices[index], L1_Feq.size)}")
        print(f"CRL1 f is {1/L1_invF_list_sorted[index]:.2f} m, focus at q1 = {q1_list[index]:.2f} m")
        print(f"Focal size is {FWHM1H_list[index]*1.0e6:.2f} μm x {FWHM1V_list[index]*1.0e6:.2f} μm at the focal point ({dq1_list[index]*1e3:.1f} mm from sample)")

    FWHM1H_atsample_list = (FWHM1H_list**2 + (aperL1H_list*dq1_list/q1_list)**2)**0.5
    FWHM1V_atsample_list = (FWHM1V_list**2 + (aperL1V_list*dq1_list/q1_list)**2)**0.5
    FWHM_atsample_list   = (FWHM1H_atsample_list*FWHM1V_atsample_list)**0.5
    indices, values = find_levels(FWHM_atsample_list, fsize, direction='forward')
    index2 = indices[0]
    if index2 == -1:
        print(f"Cannot achieve the bame size {fsize*1.0e6:.2f} μm at sample")
    else:
        print("======== Find size at sample =======================================")
        print(f"CRL1 configuration index in sorted list is {index2}")
        print(f"CRL1 configuration index is {L1_invF_list_sort_indices[index2]} or {index_to_binary_list(L1_invF_list_sort_indices[index2], L1_Feq.size)}")
        print(f"CRL1 f is {1/L1_invF_list_sorted[index2]:.2f} m, focus at q1 = {q1_list[index2]:.2f} m ({dq1_list[index2]*1e3:.1f} mm from sample)")
        print(f"Beam size is {FWHM1H_atsample_list[index2]*1.0e6:.2f} μm x {FWHM1V_atsample_list[index2]*1.0e6:.2f} μm at the sample position)")

    indices, values = find_levels(dq1_list, 0.0, direction='backward')
    index3 = indices[0]
    if index == -1:
        print(f"Cannot find combination to focus close to sample")
    else:
        print("======== Find configuration focus close to the sample ==============")
        print(f"CRL1 configuration index in sorted list is {index3}")
        print(f"CRL1 configuration index is {L1_invF_list_sort_indices[index3]} or {index_to_binary_list(L1_invF_list_sort_indices[index3], L1_Feq.size)}")
        print(f"CRL1 f is {1/L1_invF_list_sorted[index3]:.2f} m, focus at q1 = {q1_list[index3]:.2f} m ({dq1_list[index3]*1e3:.1f} mm from sample)")
        print(f"Beam size is {FWHM1H_atsample_list[index3]*1.0e6:.2f} μm x {FWHM1V_atsample_list[index3]*1.0e6:.2f} μm at the sample position)")

    return


if __name__ == "__main__":

    flag_HE = True

    fsize  = 50.0e-6            # Desired focal size in m (area average of h and v size)
    #Single_CRL2D_control(fsize)  # Find the best configuration for a single transfocator system


'''
Update the following to accommodate XS code
'''

class singleTF():
	
	def __init__(self):
		# Initialize beamline layout variables
		self.d_StoL = 51.9              # Source-to-CRL1 distance, in m
		self.d_Stof  = 66.2              # Source-to-focus distance, in m
			
		# Initialize source variables
		self.L_und = 4.7
		self.energy = 15000.0            # Energy in eV
		self.energy_keV = self.energy/1000.0  # Energy in keV
		self.wl = 1239.84 / (self.energy * 10**9)	#Wavelength in nm(?)
		
		self.sigmaH_e = 14.8e-6          # Sigma electron source size in H direction in m
		self.sigmaV_e = 3.7e-6           # Sigma electron source size in V direction in m
		self.sigmaHp_e = 2.8e-6          # Sigma electron divergence in H direction in rad
		self.sigmaVp_e = 1.5e-6          # Sigma electron divergence in V direction in rad
		
		self.sigmaH =  (self.sigmaH_e**2 +  self.wl*self.L_und/2/np.pi/np.pi)**0.5
		self.sigmaV =  (self.sigmaV_e**2 +  self.wl*self.L_und/2/np.pi/np.pi)**0.5
		self.sigmaHp = (self.sigmaHp_e**2 + self.wl/self.L_und/2)**0.5
		self.sigmaVp = (self.sigmaVp_e**2 + self.wl/self.L_und/2)**0.5
		
		# Initialize lens variables
		self.d_min   = 3.0e-5            # Minimum thickness at the apex in m
		self.stack_d = 50.0e-3           # Stack thickness in m
		self.L1_n    = np.array([1,      1,      1,      1,      1,      1,      2,      4,      8,      16])                # CRL1 number of lenses in each stack
		self.L1_R    = np.array([2.0e-3, 1.0e-3, 5.0e-4, 3.0e-4, 2.0e-4, 1.0e-4, 1.0e-4, 1.0e-4, 1.0e-4, 1.0e-4])            # CRL1 lens radius in each stack
		self.L1_mater= np.array(["Be",   "Be",   "Be",   "Be",   "Be",   "Be",   "Be",   "Be",   "Be",   "Be"])              # CRL1 lens material in each stack
		self.L1_loc  = np.array([4.5,    3.5,    2.5,    1.5,    0.5,    -0.5,   -1.5,   -2.5,   -3.5,   -4.5])*stack_d      # CRL1 lens stack location relative to center stack, positive means upstream
		self.L1_HE   = np.array([1.0e-6, 1.0e-6, 1.0e-6, 1.0e-6, 1.0e-6, 1.0e-6, 1.4e-6, 2.0e-6, 2.8e-6, 4.0e-6])            # CRL1 lens RMS thickness error

		self.Lens_diameter_table = [
									(50, 450.0),
									(100, 632.0),
									(200, 894.0),
									(300, 1095.0),
									(500, 1414.0),
									(1000, 2000.0),
									(1500, 2450.0),
								]
		# Convert the lookup table to a dictionary for faster lookup		
		self.Lens_diameter_dict = {int(col1): col2 for col1, col2 in Lens_diameter_table}
		
		
		# Initialize pre-CRL slit size
		self.slit1_H = 500.0e-6          # H slit size before CRL 1
		self.slit1_V = 300.0e-6          # V slit size before CRL 1

		#Calc lookup table
		self.lookup_table=calc_lookup_table(self, ...)


		self.energy = 0  # gets value from an ao (incoming beam energy)
		self.focalSize = 0 # get value from an ao (desired focal length)
		self.lenses = 0 # sets integer (2^12) whose binary representation indicates which lenses are in or out
		

		
		
	def setSource(self):
		self.L_und = 4.7
		self.energy = 15000.0            # Energy in eV
		self.energy_keV = self.energy/1000.0  # Energy in keV
		self.wl = 1239.84 / (self.energy * 10**9)	#Wavelength in nm(?)
		
		self.sigmaH_e = 14.8e-6          # Sigma electron source size in H direction in m
		self.sigmaV_e = 3.7e-6           # Sigma electron source size in V direction in m
		self.sigmaHp_e = 2.8e-6          # Sigma electron divergence in H direction in rad
		self.sigmaVp_e = 1.5e-6          # Sigma electron divergence in V direction in rad
		
		self.sigmaH =  (self.sigmaH_e**2 +  self.wl*self.L_und/2/np.pi/np.pi)**0.5
		self.sigmaV =  (self.sigmaV_e**2 +  self.wl*self.L_und/2/np.pi/np.pi)**0.5
		self.sigmaHp = (self.sigmaHp_e**2 + self.wl/self.L_und/2)**0.5
		self.sigmaVp = (self.sigmaVp_e**2 + self.wl/self.L_und/2)**0.5

		#any update calcs to be called?

		
	def setBeamline(self):
		self.d_StoL =               # Source-to-CRL1 distance, in m
		self.d_Stof  =              # Source-to-focus distance, in m

	def setLenses(self, propertyType, propertyVal, lensNum):
		self.d_min   = 3.0e-5            # Minimum thickness at the apex in m
		self.stack_d = 50.0e-3           # Stack thickness in m
		self.L1_n    = np.array([1,      1,      1,      1,      1,      1,      2,      4,      8,      16])                # CRL1 number of lenses in each stack
		self.L1_R    = np.array([2.0e-3, 1.0e-3, 5.0e-4, 3.0e-4, 2.0e-4, 1.0e-4, 1.0e-4, 1.0e-4, 1.0e-4, 1.0e-4])            # CRL1 lens radius in each stack
		self.L1_mater= np.array(["Be",   "Be",   "Be",   "Be",   "Be",   "Be",   "Be",   "Be",   "Be",   "Be"])              # CRL1 lens material in each stack
		self.L1_loc  = np.array([4.5,    3.5,    2.5,    1.5,    0.5,    -0.5,   -1.5,   -2.5,   -3.5,   -4.5])*stack_d      # CRL1 lens stack location relative to center stack, positive means upstream
		self.L1_HE   = np.array([1.0e-6, 1.0e-6, 1.0e-6, 1.0e-6, 1.0e-6, 1.0e-6, 1.4e-6, 2.0e-6, 2.8e-6, 4.0e-6])            # CRL1 lens RMS thickness error

		#any update calcs to be called?
		
	def setLensCount(self, lensCount):
		pass


	def calc_lookup_table(self):
		#------------------> Needs refactoring <--------------------------------
		L1_D        = np.zeros(L1_R.size)                                   # CRL1 diameters for each stack
		for i in range(L1_R.size):
			L1_D[i] = lookup_diameter(L1_R[i])
		L1_delta    = materials_to_deltas(L1_mater, energy_keV)             # delta values for CRL1 stacks
		L1_mu       = materials_to_linear_attenuation(L1_mater, energy_keV) # mu values for CRL1 stacks
		L1_Feq      = L1_R/(2*L1_n*L1_delta) + L1_loc                       # CRL1 equivalent f in m for each stack
		
		L1_index_n  = 2**L1_Feq.size                                        # Total number of combinations for CRL1
		L1_invF_list= np.zeros(L1_index_n)                                  # List of equivalent 1/f in m^-1 for CRL1
		for i in range(L1_index_n):
			L1_invF_list[i] = np.sum(index_to_binary_list(i, L1_Feq.size)/L1_Feq)
		# Sort the L1_invF list (to avoid zigzagging)
		L1_invF_list_sort_indices = np.argsort(L1_invF_list)
		L1_invF_list_sorted       = L1_invF_list[L1_invF_list_sort_indices]
		q1_list  = 1/(L1_invF_list_sorted - 1/d_StoL1)      # focal position of CRL1 for all configurations (sorted)
		dq1_list = q1_list - (d_Stof - d_StoL1)
		
		# Start generating focal size list as a function of CRL1 setting
		sigma1H         = (sigmaH**2 + (sigmaHp*d_StoL1)**2)**0.5   # sigma beam size before CRL1
		sigma1V         = (sigmaV**2 + (sigmaVp*d_StoL1)**2)**0.5   # sigma beam size before CRL1
		L1_n1mud_list   = np.zeros(L1_index_n)                      # List of n1*mu*d_min for all possible CRL1 configurations
		L1_n1muR_list   = np.zeros(L1_index_n)                      # List of n1*mu/R for all possible CRL1 configurations
		aperL1H_list    = np.zeros(L1_index_n)                      # absorption H aperture of CRL1 for all configurations
		aperL1V_list    = np.zeros(L1_index_n)                      # absorption V aperture of CRL1 for all configurations
		diameter1_list  = np.zeros(L1_index_n)                      # CRL1 diameter for all possible configurations
		FWHM1H_list     = np.zeros(L1_index_n)                      # H focal size at the focus of CRL1
		FWHM1V_list     = np.zeros(L1_index_n)                      # V focal size at the focus of CRL1
		Strehl_list     = np.zeros(L1_index_n)                      # Strehl ratio based on lens thickness error
		
		for i in range(L1_index_n):
			# absorption aperture is a function of CRL absorption/physical aperture, incident beam size, and physical slits
			L1_n1mud_list[i] = np.sum(index_to_binary_list(L1_invF_list_sort_indices[i], L1_Feq.size)*np.array(L1_mu*L1_n*d_min))
			L1_n1muR_list[i] = np.sum(index_to_binary_list(L1_invF_list_sort_indices[i], L1_Feq.size)*np.array(L1_mu*L1_n/L1_R))
			solution = root_scalar(absorptionaperture, args=(L1_n1mud_list[i], sigma1H, L1_n1muR_list[i]), bracket=[0.0, 2*sigma1H], method='bisect')
			aperL1H_list[i] = solution.root*2.0
			solution = root_scalar(absorptionaperture, args=(L1_n1mud_list[i], sigma1V, L1_n1muR_list[i]), bracket=[0.0, 2*sigma1V], method='bisect')
			aperL1V_list[i] = solution.root*2.0
			mask = (np.array(index_to_binary_list(L1_invF_list_sort_indices[i], L1_Feq.size)) == 1)
			if np.all(mask == False):
				diameter1_list[i] = np.inf
			else:
				diameter1_list[i] = np.min(L1_D[mask])
			aperL1H_list[i] = min(aperL1H_list[i], diameter1_list[i], slit1_H)
			aperL1V_list[i] = min(aperL1V_list[i], diameter1_list[i], slit1_V)
			phase_error_tmp = np.linalg.norm(index_to_binary_list(L1_invF_list_sort_indices[i], L1_Feq.size)*np.array(L1_HE*L1_delta)*2*np.pi/wl)
			Strehl_list[i] = np.exp(-phase_error_tmp**2)
		
		# FWHMbeam size at CRL1 focus
		FWHM1H_list  = ((0.88*wl*q1_list/aperL1H_list)**2 + (2.355*sigmaH*q1_list/d_StoL1)**2)**0.5
		FWHM1V_list  = ((0.88*wl*q1_list/aperL1V_list)**2 + (2.355*sigmaV*q1_list/d_StoL1)**2)**0.5
		if flag_HE:
			FWHM1H_list *= (Strehl_list)**(-0.5)
			FWHM1V_list *= (Strehl_list)**(-0.5)
		FWHM_list   = (FWHM1H_list*FWHM1V_list)**0.5
		#------------------> End refactoring <--------------------------------

	def find_config(self):
		# match desired fsize to lookup table
		pass		
				
	def updateSlitSize(self, size, slit):
		if slit = 'hor':
			self.slit1_H = float(size)          # H slit size before CRL 1
		elif slit == 'vert':
			self.slit1_V = float(size)     # V slit size before CRL 1
		else 
			# Need error handling
			break
		self.calc_lookup_table()

	def updateE(self, energy):
		# Energy variable sent from IOC as a string
		self.energy = float(energy)
		self.calc_lookup_table()
	
	def updateFsize(self, focalSize):

		# focalPoint variable sent from IOC as a string
		self.focalSize = float(focalSize)
		self.find_config()
		
	def calc_lenses(self):
		self.lenses = (self.energy * self.focalPoint) % 4096
		pydev.iointr('new_lens_config', self.lenses)