Newer
Older
mwyman
committed
import numpy as np
mwyman
committed
from scipy.optimize import root_scalar
import xraylib
from transfocator_calcs import lookup_diameter, materials_to_deltas, materials_to_linear_attenuatio, calc_lookup_tablen
MAT_MACRO = 'MAT'
NLENS_MACRO = 'NUMLENS'
RADIUS_MACRO = 'RADIUS'
LOC_MACRO = 'LOC'
THICKERR_MACRO = 'THICKERR'
mwyman
committed
'''
Config variables
Beam Properties
energy : energy in keV
L_und : undulator length in m
sigmaH_e : Sigma electron source size in H direction in m
sigmaV_e : Sigma electron source size in V direction in m
sigmaHp : Sigma electron divergence in H direction in rad
sigmaVp_e : Sigma electron divergence in V direction in rad
Beamline properties
d_StoL1 : Source-to-CRL1 distance, in m
d_Stof : Source-to-focus distance, in m
CRL properties
d_min : Minimum thickness at the apex in m
stack_d : Stack thickness in m
Slit properties
'''
DEFAULT_CONFIG = {'beam':{'energy': 15, 'L_und': 4.7, 'sigmaH_e': 14.8e-6,
'sigmaV_e': 3.7e-6, 'sigmaHp_e': 2.8e-6, 'sigmaVp_e': 1.5e-6},
'beam_line': {'d_StoL': 51.9, 'd_Stof': 66.2},
'crl':{'stack_d': 50.0e-3, 'd_min': 3.0e-5},
'slits':{}}
mwyman
committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
"""
pyDevice TO DO:
WHAT inputs change the focal size arrays? Energy, what else?
WHAT inputs change the search through the arrays? desired focal size, what else?
IOC init functions
-get lens stack parameters (# of lenses in each stack, radius, location, thickness, thickness error) -- from substitution file but put into PVs? Update with autosave?
-get source info
-energy from from ID IOC
-hor/vert sizes and divergence (also energy dependent)
-lens diameter table? What is it doing?
-desired focal size is changed --> what needs updating? --> nothing, just need to search focal size array again
-multiple flags: is focal size achievable? is it achievable at sample?
recalc function -- should probably be same as init function
-energy is updated --> what needs updating?
-what else could user/staff change? sample position?
"""
# Beamline input block
energy = 15000.0 # Energy in eV
energy_keV = energy/1000.0 # Energy in keV
wl = 1239.84 / (energy * 10**9)
d_StoL1 = 51.9 # Source-to-CRL1 distance, in m
d_StoL2 = 62.1 # Source-to-CRL2 distance, in m
d_Stof = 66.2 # Source-to-focus distance, in m
#slit1_H = 500.0e-6 # H slit size before CRL 1
#slit1_V = 300.0e-6 # V slit size before CRL 1
# CRL input block
d_min = 3.0e-5 # Minimum thickness at the apex in m
stack_d = 50.0e-3 # Stack thickness in m
L1_n = np.array([1, 1, 1, 1, 1, 1, 2, 4, 8, 16]) # CRL1 number of lenses in each stack
L1_R = np.array([2.0e-3, 1.0e-3, 5.0e-4, 3.0e-4, 2.0e-4, 1.0e-4, 1.0e-4, 1.0e-4, 1.0e-4, 1.0e-4]) # CRL1 lens radius in each stack
L1_mater= np.array(["Be", "Be", "Be", "Be", "Be", "Be", "Be", "Be", "Be", "Be"]) # CRL1 lens material in each stack
L1_loc = np.array([4.5, 3.5, 2.5, 1.5, 0.5, -0.5, -1.5, -2.5, -3.5, -4.5])*stack_d # CRL1 lens stack location relative to center stack, positive means upstream
L1_HE = np.array([1.0e-6, 1.0e-6, 1.0e-6, 1.0e-6, 1.0e-6, 1.0e-6, 1.4e-6, 2.0e-6, 2.8e-6, 4.0e-6]) # CRL1 lens RMS thickness error
# Source size input block
L_und = 4.7 # undulator length
sigmaH_e = 14.8e-6 # Sigma electron source size in H direction in m
sigmaV_e = 3.7e-6 # Sigma electron source size in V direction in m
sigmaHp_e = 2.8e-6 # Sigma electron divergence in H direction in rad
sigmaVp_e = 1.5e-6 # Sigma electron divergence in V direction in rad
sigmaH = (sigmaH_e**2 + wl*L_und/2/np.pi/np.pi)**0.5
sigmaV = (sigmaV_e**2 + wl*L_und/2/np.pi/np.pi)**0.5
sigmaHp = (sigmaHp_e**2 + wl/L_und/2)**0.5
sigmaVp = (sigmaVp_e**2 + wl/L_und/2)**0.5
def absorptionaperture(x, n1mud, sigma, n1mur):
numerator = np.exp(-(x**2/(2*sigma**2))) * np.exp(-n1mur*(x**2) - n1mud)
denominator = np.exp(-n1mud)
return numerator / denominator - 0.5
def find_levels(array, levels, direction='forward'):
"""
Find the first indices at which the array crosses specified levels and the corresponding crossed values.
Parameters:
array (numpy.ndarray): An array of numbers.
levels (float or numpy.ndarray): A number or an array of levels to find crossings.
direction (str, optional): The searching direction. Defaults to 'forward'.
Can be either 'forward' or 'backward'.
Returns:
tuple: A tuple containing two arrays:
- An array of first indices at which the array crosses the specified levels.
- An array of first crossed values at the corresponding indices.
"""
# Convert a single level to a numpy array
if isinstance(levels, (int, float)):
levels = np.array([levels])
indices = []
values = []
# Compute the max and min of the array ignoring NaNs
max_val = np.nanmax(array)
min_val = np.nanmin(array)
for level in levels:
# If level is out of bounds
if level > max_val or level < min_val:
indices.append(-1)
values.append(np.nan)
continue
crossings = []
if direction == 'forward':
for i in range(1, len(array)):
if np.isnan(array[i - 1]) or np.isnan(array[i]):
continue
if (array[i - 1] < level <= array[i]) or (array[i - 1] > level >= array[i]):
crossings.append(i - 1)
break
elif direction == 'backward':
for i in range(len(array) - 2, -1, -1):
if np.isnan(array[i + 1]) or np.isnan(array[i]):
continue
if (array[i + 1] < level <= array[i]) or (array[i + 1] > level >= array[i]):
crossings.append(i)
break
else:
raise ValueError("Invalid direction. It should be either 'forward' or 'backward'.")
if len(crossings) > 0:
idx = crossings[0]
indices.append(idx)
values.append(array[idx])
else:
# In case no crossing is found within the range
indices.append(-1)
values.append(np.nan)
return np.array(indices), np.array(values)
def Single_CRL2D_control(fsize):
L1_D = np.zeros(L1_R.size) # CRL1 diameters for each stack
for i in range(L1_R.size):
L1_D[i] = lookup_diameter(L1_R[i])
L1_delta = materials_to_deltas(L1_mater, energy_keV) # delta values for CRL1 stacks
L1_mu = materials_to_linear_attenuation(L1_mater, energy_keV) # mu values for CRL1 stacks
L1_Feq = L1_R/(2*L1_n*L1_delta) + L1_loc # CRL1 equivalent f in m for each stack
L1_index_n = 2**L1_Feq.size # Total number of combinations for CRL1
L1_invF_list= np.zeros(L1_index_n) # List of equivalent 1/f in m^-1 for CRL1
for i in range(L1_index_n):
L1_invF_list[i] = np.sum(index_to_binary_list(i, L1_Feq.size)/L1_Feq)
# Sort the L1_invF list (to avoid zigzagging)
L1_invF_list_sort_indices = np.argsort(L1_invF_list)
L1_invF_list_sorted = L1_invF_list[L1_invF_list_sort_indices]
q1_list = 1/(L1_invF_list_sorted - 1/d_StoL1) # focal position of CRL1 for all configurations (sorted)
dq1_list = q1_list - (d_Stof - d_StoL1)
# Start generating focal size list as a function of CRL1 setting
sigma1H = (sigmaH**2 + (sigmaHp*d_StoL1)**2)**0.5 # sigma beam size before CRL1
sigma1V = (sigmaV**2 + (sigmaVp*d_StoL1)**2)**0.5 # sigma beam size before CRL1
L1_n1mud_list = np.zeros(L1_index_n) # List of n1*mu*d_min for all possible CRL1 configurations
L1_n1muR_list = np.zeros(L1_index_n) # List of n1*mu/R for all possible CRL1 configurations
aperL1H_list = np.zeros(L1_index_n) # absorption H aperture of CRL1 for all configurations
aperL1V_list = np.zeros(L1_index_n) # absorption V aperture of CRL1 for all configurations
diameter1_list = np.zeros(L1_index_n) # CRL1 diameter for all possible configurations
FWHM1H_list = np.zeros(L1_index_n) # H focal size at the focus of CRL1
FWHM1V_list = np.zeros(L1_index_n) # V focal size at the focus of CRL1
Strehl_list = np.zeros(L1_index_n) # Strehl ratio based on lens thickness error
for i in range(L1_index_n):
# absorption aperture is a function of CRL absorption/physical aperture, incident beam size, and physical slits
L1_n1mud_list[i] = np.sum(index_to_binary_list(L1_invF_list_sort_indices[i], L1_Feq.size)*np.array(L1_mu*L1_n*d_min))
L1_n1muR_list[i] = np.sum(index_to_binary_list(L1_invF_list_sort_indices[i], L1_Feq.size)*np.array(L1_mu*L1_n/L1_R))
solution = root_scalar(absorptionaperture, args=(L1_n1mud_list[i], sigma1H, L1_n1muR_list[i]), bracket=[0.0, 2*sigma1H], method='bisect')
aperL1H_list[i] = solution.root*2.0
solution = root_scalar(absorptionaperture, args=(L1_n1mud_list[i], sigma1V, L1_n1muR_list[i]), bracket=[0.0, 2*sigma1V], method='bisect')
aperL1V_list[i] = solution.root*2.0
mask = (np.array(index_to_binary_list(L1_invF_list_sort_indices[i], L1_Feq.size)) == 1)
if np.all(mask == False):
diameter1_list[i] = np.inf
else:
diameter1_list[i] = np.min(L1_D[mask])
aperL1H_list[i] = min(aperL1H_list[i], diameter1_list[i], slit1_H)
aperL1V_list[i] = min(aperL1V_list[i], diameter1_list[i], slit1_V)
phase_error_tmp = np.linalg.norm(index_to_binary_list(L1_invF_list_sort_indices[i], L1_Feq.size)*np.array(L1_HE*L1_delta)*2*np.pi/wl)
Strehl_list[i] = np.exp(-phase_error_tmp**2)
# FWHMbeam size at CRL1 focus
FWHM1H_list = ((0.88*wl*q1_list/aperL1H_list)**2 + (2.355*sigmaH*q1_list/d_StoL1)**2)**0.5
FWHM1V_list = ((0.88*wl*q1_list/aperL1V_list)**2 + (2.355*sigmaV*q1_list/d_StoL1)**2)**0.5
if flag_HE:
FWHM1H_list *= (Strehl_list)**(-0.5)
FWHM1V_list *= (Strehl_list)**(-0.5)
FWHM_list = (FWHM1H_list*FWHM1V_list)**0.5
indices, values = find_levels(FWHM_list, fsize, direction='backward')
index = indices[0]
if index == -1:
print(f"Cannot achieve the focal size {fsize*1.0e6:.2f} μm")
else:
print("======== Find size at focus ========================================")
print(f"Energy: {energy_keV} keV")
print(f"CRL1 configuration index in sorted list is {index}")
print(f"CRL1 configuration index is {L1_invF_list_sort_indices[index]} or {index_to_binary_list(L1_invF_list_sort_indices[index], L1_Feq.size)}")
print(f"CRL1 f is {1/L1_invF_list_sorted[index]:.2f} m, focus at q1 = {q1_list[index]:.2f} m")
print(f"Focal size is {FWHM1H_list[index]*1.0e6:.2f} μm x {FWHM1V_list[index]*1.0e6:.2f} μm at the focal point ({dq1_list[index]*1e3:.1f} mm from sample)")
FWHM1H_atsample_list = (FWHM1H_list**2 + (aperL1H_list*dq1_list/q1_list)**2)**0.5
FWHM1V_atsample_list = (FWHM1V_list**2 + (aperL1V_list*dq1_list/q1_list)**2)**0.5
FWHM_atsample_list = (FWHM1H_atsample_list*FWHM1V_atsample_list)**0.5
indices, values = find_levels(FWHM_atsample_list, fsize, direction='forward')
index2 = indices[0]
if index2 == -1:
print(f"Cannot achieve the bame size {fsize*1.0e6:.2f} μm at sample")
else:
print("======== Find size at sample =======================================")
print(f"CRL1 configuration index in sorted list is {index2}")
print(f"CRL1 configuration index is {L1_invF_list_sort_indices[index2]} or {index_to_binary_list(L1_invF_list_sort_indices[index2], L1_Feq.size)}")
print(f"CRL1 f is {1/L1_invF_list_sorted[index2]:.2f} m, focus at q1 = {q1_list[index2]:.2f} m ({dq1_list[index2]*1e3:.1f} mm from sample)")
print(f"Beam size is {FWHM1H_atsample_list[index2]*1.0e6:.2f} μm x {FWHM1V_atsample_list[index2]*1.0e6:.2f} μm at the sample position)")
indices, values = find_levels(dq1_list, 0.0, direction='backward')
index3 = indices[0]
if index == -1:
print(f"Cannot find combination to focus close to sample")
else:
print("======== Find configuration focus close to the sample ==============")
print(f"CRL1 configuration index in sorted list is {index3}")
print(f"CRL1 configuration index is {L1_invF_list_sort_indices[index3]} or {index_to_binary_list(L1_invF_list_sort_indices[index3], L1_Feq.size)}")
print(f"CRL1 f is {1/L1_invF_list_sorted[index3]:.2f} m, focus at q1 = {q1_list[index3]:.2f} m ({dq1_list[index3]*1e3:.1f} mm from sample)")
print(f"Beam size is {FWHM1H_atsample_list[index3]*1.0e6:.2f} μm x {FWHM1V_atsample_list[index3]*1.0e6:.2f} μm at the sample position)")
return
if __name__ == "__main__":
flag_HE = True
fsize = 50.0e-6 # Desired focal size in m (area average of h and v size)
#Single_CRL2D_control(fsize) # Find the best configuration for a single transfocator system
'''
Update the following to accommodate XS code
'''
class singleTF():
def __init__(self, crl_setup = None, beam_config = DEFAULT_CONFIG['beam'],
beamline_config = DEFAULT_CONFIG['beamline'],
crl_config = DEFAULT_CONFIG['crl'],
slits_config = DEFAULT_CONFIG['slits']):
beam = beam_config
beamline = beamline_config
crl = crl_config
slits = slits_config
else:
with open(crl_setup, "rb") as f:
config = tomllib.load(f)
beam = config['beam']
beamline = config['beamline']
crl = config['crl']
slits = config['slits']
self.setupSource(beam)
mwyman
committed
self.setupBeamline(beamline)
mwyman
committed
self.setupCRL(crl)
mwyman
committed
self.setupSlits(slits)
mwyman
committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Initialize lens variables
self.L1_n = np.array([1, 1, 1, 1, 1, 1, 2, 4, 8, 16]) # CRL1 number of lenses in each stack
self.L1_R = np.array([2.0e-3, 1.0e-3, 5.0e-4, 3.0e-4, 2.0e-4, 1.0e-4, 1.0e-4, 1.0e-4, 1.0e-4, 1.0e-4]) # CRL1 lens radius in each stack
self.L1_mater= np.array(["Be", "Be", "Be", "Be", "Be", "Be", "Be", "Be", "Be", "Be"]) # CRL1 lens material in each stack
self.L1_loc = np.array([4.5, 3.5, 2.5, 1.5, 0.5, -0.5, -1.5, -2.5, -3.5, -4.5])*stack_d # CRL1 lens stack location relative to center stack, positive means upstream
self.L1_HE = np.array([1.0e-6, 1.0e-6, 1.0e-6, 1.0e-6, 1.0e-6, 1.0e-6, 1.4e-6, 2.0e-6, 2.8e-6, 4.0e-6]) # CRL1 lens RMS thickness error
self.Lens_diameter_table = [
(50, 450.0),
(100, 632.0),
(200, 894.0),
(300, 1095.0),
(500, 1414.0),
(1000, 2000.0),
(1500, 2450.0),
]
# Convert the lookup table to a dictionary for faster lookup
self.Lens_diameter_dict = {int(col1): col2 for col1, col2 in Lens_diameter_table}
# Initialize pre-CRL slit size
self.slit1_H = 500.0e-6 # H slit size before CRL 1
self.slit1_V = 300.0e-6 # V slit size before CRL 1
self.energy = 0 # gets value from an ao (incoming beam energy)
self.focalSize = 0 # get value from an ao (desired focal length)
self.lenses = 0 # sets integer (2^12) whose binary representation indicates which lenses are in or out
mwyman
committed
self.verbosity = True
self.lookupTable = []
def setupSource(self, beam_properties):
'''
Beam properties can have entries for the following
energy : energy in keV
L_und : undulator length in m
sigmaH_e : Sigma electron source size in H direction in m
sigmaV_e : Sigma electron source size in V direction in m
sigmaHp : Sigma electron divergence in H direction in rad
sigmaVp_e : Sigma electron divergence in V direction in rad
mwyman
committed
self.setEnergy(beam_properites['energy'])
self.L_und = beam_properties['L_und']
self.sigmaH_e = beam_properties['sigmaH_e']
self.sigmaV_e = beam_properties['sigmaV_e']
self.sigmaHp_e = beam_properties['sigmaHp_e']
self.sigmaVp_e = beam_properties['sigmaVp_e']
mwyman
committed
self.sigmaH = (self.sigmaH_e**2 + self.wl*self.L_und/2/np.pi/np.pi)**0.5
self.sigmaV = (self.sigmaV_e**2 + self.wl*self.L_und/2/np.pi/np.pi)**0.5
self.sigmaHp = (self.sigmaHp_e**2 + self.wl/self.L_und/2)**0.5
self.sigmaVp = (self.sigmaVp_e**2 + self.wl/self.L_und/2)**0.5
Beamline properties can contain entries for the following
d_StoL1 : Source-to-CRL1 distance, in m
d_Stof : Source-to-focus distance, in m
'''
self.d_StoL = beam_properties['d_StoL']
self.d_Stof = beam_properties['d_Stof']
CRL properties can contiain entries for the following
d_min : Minimum thickness at the apex in m
stack_d : Stack thickness in m
self.d_min = crl_properties['d_min']
self.stack_d = crl_properties['stack_d']
def setupSlits(self, slit_properties):
'''
Setting up properties of slits
'''
#Default values
mwyman
committed
mwyman
committed
def setLensCount(self, lensCount):
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
self.numLens =
def setupLookupTable(self, subs_file, n_lenses, energy = 8.0):
'''
lookup table created after IOC startup (after filter materials and
thicknesses are set
'''
print(80*'#')
print('Setting up lens control...')
self.num_lenses = n_lenses
self.energy = energy
#read in substitutions file
try:
subsFile = open(subs_file,"r")
except:
raise RuntimeError(f"Substiution file ({subsFile}) not found.")
subsFileContent = subsFile.readlines()
subsFile.close()
macros = subsFileContent[2].replace('{','').replace('}','').replace(',','').split()
lens_properties = {key: [] for key in macros} # dictionary of lists
for i in range(self.num_filters):
try:
xx = subsFileContent[3+i].replace('{','').replace('}','').replace(',','').replace('"','').split()
lens_properties[macros[0]].append(xx[0])
lens_properties[macros[1]].append(xx[1])
lens_properties[macros[2]].append(xx[2])
lens_properties[macros[3]].append(xx[3])
lens_properties[macros[4]].append(xx[4])
lens_properties[macros[5]].append(xx[5])
lens_properties[macros[6]].append(xx[6])
except:
raise RuntimeError(f"Number of lenses ({self.num_lenses}) doesn't match substitution file")
self.numlens = []
self.radius = []
self.materials = []
self.lens_loc = []
self.lens_thickerr = []
# get number of lens for each lens from lens properties dictionary-list
print('Getting lens materials...')
if NLENS_MACRO in macros:
self.numlens = lens_properties[NLENS_MACRO]
print('Number of lens read in.\n')
else:
raise RuntimeError(f"Number of lenses macro ({NLENS_MACRO}) not found in substituion file")
mwyman
committed
# get radii for each lens from lens properties dictionary-list
print('Getting lens\' radii...')
if RAD_MACRO in macros:
self.radius = lens_properties[RAD_MACRO]
print('Radius of lenses read in.\n')
else:
raise RuntimeError(f"Radius macro ({RAD_MACRO}) not found in substituion file")
mwyman
committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# get materials from lens properties dictionary-list
print('Getting lens materials...')
if MAT_MACRO in macros:
self.materials = lens_properties[MAT_MACRO]
print('Lens material read in.\n')
else:
raise RuntimeError(f"Material macro ({MAT_MACRO}) not found in substituion file")
# get densities from local definition (for compounds) or from xraylib (for elements)
densities = get_densities(self.materials)
self.densities = [densities[material] for material in self.materials]
# get location of each lens from lens properties dictionary-list
print('Getting lens\' locations...')
if LOC_MACRO in macros:
self.lens_loc = lens_properties[LOC_MACRO]*self.stack_d
print('Location of lenses read in.\n')
else:
raise RuntimeError(f"Location macro ({RAD_MACRO}) not found in substituion file")
# get thicknesses errprfrom lens properties dictionary-list
print('Getting lens thickness error...')
if TERR_MACRO in macros:
self.lens_thickerr = [float(i) for i in lens_properties[TERR_MACRO]]
print('Lens thickness errors read in.\n')
else:
raise RuntimeError(f"Thickness errors macro ({TERR_MACRO}) not found in substituion file")
print('Constructing lookup table...')
self.construct_lookup_table()
print('Lookup table calculation complete.\n')
print('Filter control setup complete.')
print(80*'#')
def construct_lookup_table(self):
self.lookupTable = calc_lookup_table(self.num_configs, self.radius,
self.material, self.energy, self.numlens,
self.lens_loc)
self.culledTable()
def cull_lookup_table(self):
'''
Culls the lookup table based on lenses that are locked and or disabled
'''
self.culledSize = 2**(self.num_lenses - (self.outMask | self.inMask).bit_count())
if self.verbose: print(f'Operating spaced now at {self.culledSize} configurations')
if self.verbose: print(f'Culling table with in mask {self.inMask} and out mask {self.outMask}')
self.culledConfigs = np.empty(self.culledSize, dtype=int)
self.culledTable = np.empty(self.culledSize)
j = 0
for i in range(2**self.num_lenses):
if ((i & self.outMask == 0) and (i & self.inMask == self.inMask)):
self.culledConfigs[j]=i
self.culledTable[j] = self.lookupTable[i]
j += 1
self.sort_lookup_table()
def sort_lookup_table(self):
'''
'''
if self.verbose: print(f'Sorting culled lookup table of length {len(self.culledTable)}')
self.sorted_index = np.argsort(self.culledTable)
def setInMask(self, inMask):
'''
update mask for lenses that are locked in
'''
self.inMask = int(inMask)
self.cull_lookup_table()
if self.verbose: print(f'Converting culled index via in Mask')
self.convertCulledIndex()
if self.verbose: print(f'Updating filter RBV via in Mask')
self.updateLensRBV()
if self.verbose: print(f'Setting in mask RBV to {self.inMask}')
pydev.iointr('new_inMask', int(self.inMask))
def setOutMask(self, outMask):
'''
update mask for lenses that must remain out (either disabled or locked)
'''
self.outMask = int(outMask)
self.cull_lookup_table()
if self.verbose: print(f'Converting culled index via out Mask')
self.convertCulledIndex()
if self.verbose: print(f'Updating filter RBV via out Mask')
self.updateLensRBV()
if self.verbose: print(f'Setting out mask RBV to {self.outMask}')
pydev.iointr('new_outMask', int(self.outMask))
def convertCulledIndex(self):
'''
When available configs change, need to update index so that tweaks
continue to work
'''
if self.verbose: print('Converting ...')
self.culledIndex = (np.where(self.culledConfigs == self.config))[0][0]
if self.verbose: print(f'Culled index is {self.culledIndex}')
self.culledIndexSorted = self.sorted_index.tolist().index(self.culledIndex)
if self.verbose: print(f'Sorted culled index is {self.culledIndexSorted}')
def setFocalSizeActual(self):
'''
'''
self.focalSize_actual = self.culledTable[self.culledIndex]
mwyman
committed
def find_config(self):
'''
User selected focal size, this function finds nearest acheivable focal
size from the lookup table
'''
# Code to search lookup table for nearest focal size to desired
if self.verbose: print(f'Searching for config closest to {self.focalSize}')
self.culledIndex = np.argmin(np.abs(self.culledTable - self.focalSize))
if self.verbose: print(f'Config index found at {self.culledIndex}')
self.culledIndexSorted = self.sorted_index.tolist().index(self.culledIndex)
if self.verbose: print(f'Sorted config index found at {self.culledIndexSorted}')
# Update PVs
self.setFocalSizeActual()
self.updateLensConfigPV()
self.updateLensRBV()
self.updateFocalSizeRBVs()
mwyman
committed
def updateSlitSize(self, size, slit):
'''
Slit size updates are propagated to CRL object from EPICS. The beam
size lookup table is then recalculated.
'''
mwyman
committed
if slit = 'hor':
self.slit1_H = float(size) # H slit size before CRL 1
elif slit == 'vert':
self.slit1_V = float(size) # V slit size before CRL 1
else
# Need error handling
break
mwyman
committed
def setEnergy(self, energy):
'''
Sets various forms of energy
'''
self.energy = float(energy)
self.energy_eV = self.energy*1000.0 # Energy in keV
self.wl = 1239.84 / (self.energy_eV * 10**9) #Wavelength in nm(?)
mwyman
committed
def updateE(self, energy):
'''
Beam energy updates are propagated to CRL object from EPICS. The beam
size lookup table is then recalculated.
'''
mwyman
committed
# Energy variable sent from IOC as a string
# Do I need to find what the current config would produce as far as focal size and location?
# self.focalSizeRBV =
mwyman
committed
def updateFsize(self, focalSize):
'''
User updates desired focal size. Lookup table is traversed to find nearest
to desired.
'''
mwyman
committed
# focalPoint variable sent from IOC as a string
self.focalSize = float(focalSize)
self.find_config()
# def calc_lenses(self):
# self.lenses = (self.energy * self.focalPoint) % 4096
# pydev.iointr('new_lens_config', self.lenses)
def updateLensConfigPV(self):
'''
'''
self.config = self.culledConfigs[self.culledIndex]
pydev.iointr('new_lenses', int(self.config))
def updateLensRBV(self):
'''
'''
pydev.iointr('new_index', int(self.culledIndexSorted))
def updateFocalSizeRBVs(self):
'''
'''
pydev.iointr('new_fSize', self.focalSize_actual)
mwyman
committed